The generalized Ornstein–Uhlenbeck process
نویسندگان
چکیده
Langevin-like equations have been studied in the presence of arbitrary noise. The characteristic functional of the generalized Langevin process has been built up. Exact results for all cumulants are given. Particular stress has been put on the Campbell, dichotomous and radioactive decay noises. Transient relaxation, susceptibility and diffusion constants for different (noisy) media have been sketched in order to exemplify the theory. The generalized Ornstein– Uhlenbeck and Wiener processes have been completely characterized. The generalized Kubo oscillator has been worked out and all its 1-time moments have been calculated for different noise structures.
منابع مشابه
Asymptotic Results for Sample Autocovariance Functions and Extremes of Integrated Generalized Ornstein-Uhlenbeck Processes
We consider a positive stationary generalized Ornstein-Uhlenbeck process
متن کاملExponential Ergodicity and β-Mixing Property for Generalized Ornstein-Uhlenbeck Processes
The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the exponentially β-mixing property. Our results can cover...
متن کاملGeneralized fractional Ornstein-Uhlenbeck processes
We introduce an extended version of the fractional Ornstein-Uhlenbeck (FOU) process where the integrand is replaced by the exponential of an independent Lévy process. We call the process the generalized fractional Ornstein-Uhlenbeck (GFOU) process. Alternatively, the process can be constructed from a generalized Ornstein-Uhlenbeck (GOU) process using an independent fractional Brownian motion (F...
متن کاملMultivariate Generalized Ornstein-Uhlenbeck Processes
De Haan and Karandikar [12] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h > 0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh = A(n−1)h,nhV(n−1)h + B(n−1)h,nh, n ∈ N, where (A(n−1)h,nh, B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each ...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کامل